SPECIFICATIONS ORTHOPURE+Methaniser					
Accuracy	<1 % of the reading scale or depends on LDL				
Drift	<1 % of the reading scale over 24 hours				
Temperature drift	<1 % of the reading scale per degree				
Operating temperature	~ 20°C without wide variations of temperature				
Sampling gas	N ₂ , Ar, He, Air, H ₂ , O2, C O ₂				
Sample gas connection	1/8" Swagelok SS or VCR				
Sample flow rate	Approximately 3 to 5 l/h				
Sample pressure	Lower than 100 mBarg				
Combustive gas	Synthetic air				
Combustive gas connection	1/8" Swagelok SS or VCR				
Combustive gas pressure	2 Barg stable				
Combustive gas flow rate	300 ml/min				
Recommended quality	min. 6.0 or purified gas				
Fuel gas	Hydrogen				
Fuel gas connection	1/8" Swagelok SS or VCR				
Fuel gas pressure	1 Barg stable				
Fuel gas flow rate	38 ml/min				
Recommended quality	Min. 6.0 or purified gas				
Carrier gas	Argon, Nitrogen, Helium or Hydrogen				
Carrier gas connection	1/8" Swagelok SS or VCR				
Carrier gas pressure	from 4 to 10 Barg				
Carrier gas flow rate	2 to 6 l/h				
Recommended quality	min. 6.0 or purified gas				
Power supply	220 Vac, 50-60 Hz				
Power consumption	500 VA				
4-20 mA output	Eight configurable outputs dependin on the application.				
Digital output	Optional RS232, modbus, Profibus				
Output relays	1 Analyser Failure alarm contact				
(SPST 2 amperes / 250 Vac)	1 Alarm High contact				
, , , , , , , , , , , , , , , , , , , ,	1 Alarm High High contact				

sales@ www.orthodyne.be

A new generation of intelligent detectors

UMTR Dimensions

FID Dimensions

Rue Des Technologies, 23 – B-4432 ALLEUR – BELGIUM Phone : +32-4-247.91.06 – Fax : +32-4-263.09.79 E-Mail : sales@orthodyne.be

Analysis of **CH₄, CO, CO₂** and **NMHC** in **PPB** and **PPM**

ORTHO

ORTHOPURE FID

+ methaniser

The FID is an analytical system that measures CH_4 , CO_5 , NMHC in ppb and in ppm level in Helium, Argon, Oxygen, Nitrogen, Hydrogen or Air

PRINCIPLE

The flame ionization detector is placed in a temperature regulated chamber.

It is designed to detect traces of hydrocarbons in neutral gases.

The combustion of Hydrogen and Synthetic Air creates a flame in which are burning the organic components contained in the gas to be analysed.

When burning, these components produce ions which are collected by an electrode.

The very weak current obtained in this way is amplified in an electrometer with high gain and directed to a data aquisition system.

A polarization electrode is connected on the level of the nozzle and a collecting electrode with adjustable distance make the best results possible.

Coupled with a methanizer (UMTR unit), it also detects traces of CO and CO₂.

The methaniser is foreseen to convert, in a catalytic reactor, traces of CO and CO₂ into methane.

This reaction takes place at a temperature of \pm 350°C in presence of Hydrogen in excess

The following reactions bring these conversions : $CO + 3 H_2 = CH_4 + H_2O \text{ and } CO_2 + 4 H_2 = CH_4 + 2 H_2O$

With a properly adjusted temperature and flowrate, the efficiency is almost of 100%.

When supplied with high purity gases, the detection threshold can reach 1 ppb.

UMTR METHANISER EXPLANATION

A > Gas inlet	D > Heating element		
B > Gas outlet	E > PT100 sensor		
C > Oven	F > Catalytic reactor		

• Air separation plants

- Cryogenic truck loading station
- Specialty gas laboratories
- Process control
- Steel industry

FID DETECTOR EXPLANATION

FEATURES

- < 1 ppb resolution guaranteed. (Based on Method of Detection Limit of EPA 40 CFR Part
- 136 Appendix B-Revision 1.11)
- User-friendly software.
- GC technology used for complete separation between each impurity.
- NMHC : Total hydrocarbons from C2 to C5 (Given in CH, equivalent).
- Electronic flame-out guard circuit.
- Automatic fuel shut off system.
- Adjustable alarm and oven settings.
- Fast response.
- Possibility of auto-calibration programming ideal for unmanned plant conditions.
- Easy access to pressure and flow control devices.
- CE marked.

MEASUREMENT CAPABILITIES

Sample	ARGON	HELIUM	HYDROGEN	NITROGEN	OXYGEN
Type : Orthodyne FID	< 1 ppb CH ₄ < 1 ppb CO < 1 ppb CO ₂ < 1 ppb NMHC	< 1 ppb CH ₄ < 1 ppb CO < 1 ppb CO ₂ < 1 ppb NMHC	< 1 ppb CH ₄ < 1 ppb CO < 1 ppb CO ₂ < 1 ppb NMHC	< 1 ppb CH ₄ < 1 ppb CO < 1 ppb CO ₂ < 1 ppb NMHC	< 1 ppb CH ₄ < 1 ppb CO < 1 ppb CO ₂ < 1 ppb NMHC

