SPECIFICATIONS DID				
Accuracy	<1 % of the reading scale or depends on LDL			
Drift	<1 % of the reading scale over 24 hours			
Temperature drift	<1 % of the reading scale per degree			
Operating temperature	~20°C without wide variations of temperature			
Sampling gas	He, N ₂ , H ₂ , O ₂ , Ar			
Sample gas connection	1/8" Swagelok SS or VCR			
Sample flow rate	Approximately 3 to 5 l/h			
Sample pressure	Lower than 100 mBarg			
Carrier gas	Helium			
Carrier gas connection	1/8" Swagelok SS or VCR			
Carrier gas pressure	Depending on the application			
Carrier gas flow rate	4 l/h			
Recommended quality	Minimum 6.0 or purified Helium			
Power supply	220 Vac, 50-60 Hz			
Power consumption	420 VA			
4-20 mA output	Eight configurable outputs			
	depending on the application.			
Digital output	Optional RS232, Modbus, Profibus			
Output relays	1 Analyser Failure Alarm contact			
(SPST 2 amperes / 250 Vac)	1 Alarm High contact			
	1 Alarm High High contact			

Standard rack mount 5U Height > 222 mm | Depth > 545 mm | Width > 483 mm Side Top 545 mm 448 mm

Avenue de l'Union 25A - B-4430 ANS - BELGIUM Phone : +32-4-263 90 90 - Fax : +32-4-263 09 79

E-Mail : sales@orthodyne.be

September 200 Per 200

A new generation of intelligent detectors

ORTHOPURE DID

Analysis of **H2/NE/O2+AR/N2/KR/CH4/CO/CO2** and **XE** in **PPM** or **PPB** level

ztta.com • 0495 807 112

.orthodyne.be

ORTHOPURE DID

The DID is an analytical system that measures H_2 , Ne, O_2 +Ar, N_2 , Kr, CH_4 , CO, CO_2 and Xe, in Helium, Argon, Hydrogen, Nitrogen and Oxygen.

PRINCIPLE

The DID detector has been designed to make use of the variations in electrical conductibility found in highly ionised gas.

The ionisation is created by a single high frequency discharge within the detector (HF Plasma), causing a high energy photon emission (24.5 eV).

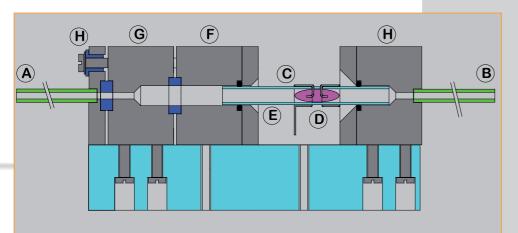
This emission is capable of ionising all the gases within the cell with the exception of the Helium.

One of the biggest advantage of our DID detector is that a photo-ionised discharge is achieved without any radioactive emissions and without the need to apply excessive voltage being applied to the cell.

Another important characteristic of the DID is that the detector operates using just one gas. This one gas is used as the carrier, the flushing gas and/or the purging gas.

This gas can also serve to purge and clean all the valves.

The housing does not require flushing gas: no contamination of the gas circuit is possible before detection as the input connection is located directly on the cell of the DID detector.


The power setting of the high frequency oscillator allows for the adjustment of the detector sensitivity, which can reach 0.1 ppb (parts per billion).

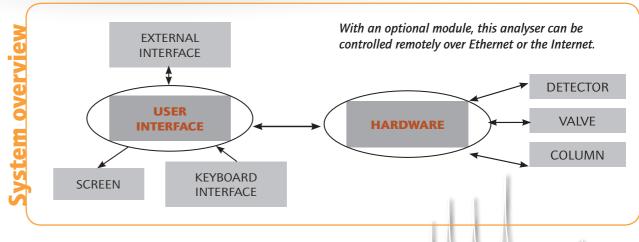
The detection limit and any background noise are directly related to the quality of the carrier gas, so the use of ultra purity (UHP) Helium as the carrier gas is highly recommended.

- Air separation plants
 - Cryogenic truck loading station
 - Specialty gas laboratories
 - Process control
 - Steel industry

Application

DID DETECTOR EXPLANATION

- A > Helium inlet
- B > Helium outlet.
- **C** > Polarization electrode.
- D > Helium plasma
- **E** > Quartz tube
- **F** > Voltage polarization
- **G** > Measurement point
- H > Zero polarization


FEATURES

- < 1 ppb resolution guaranteed. (Based on Method of Detection Limit of EPA 40 CFR Part 136 Appendix B-Revision 1.11)
- User-friendly software.
- GC technology used for complete separation between each impurity.
- Adjustable alarm and oven settings.
- Fast response.
- Possibility of auto-calibration programming ideal for unmanned plant conditions.
- CF marked

MEASUREMENT CAPABILITIES

Sample	ARGON	HELIUM	HYDROGEN	NITROGEN	OXYGEN
Type: Orthodyne DID	< 1 ppb H2 < 1 ppb N2 < 1 ppb CH4 < 1 ppb CO	< 100 ppb Ne < 1 ppb H2 < 1 ppb O2+Ar < 1 ppb N2 < 1 ppb Kr < 1 ppb CH4 < 1 ppb CO < 1 ppb CO2 < 5 ppb Xe	< 1 ppb O2+Ar < 1 ppb N2 < 1 ppb CH4 < 1 ppb CO	< 1 ppb H2 < 1 ppb O2+Ar < 1 ppb CH4 < 1 ppb CO	< 1 ppb H2 < 1 ppb Ar < 1 ppb N2 < 1 ppb CH4 < 1 ppb CO

ORTHOPURE DID